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I. INTRODUCTION

One of the fundamental problems in electromagnetic theory is the

transmission of a spherical wave through a dielectric shell. This problem

has numerous applications in antenna radomes, electromagnetic shielding, and

scattering. It appears that solutions to this problem are available only

for the special case where the shell is an infinite dielectric half space.

That case was first studied by Sommerfeld in 1909, whereas later research V
was summarized in a book by Brekhovskikh (Chapter IV of [1]). In the

present paper, we consider a more general case, namely, the shell has two

spherical boundary surfaces. Unlike the Sommerfeld's problem, our case

does include the effects of the shell's curvature and thickness. Therefore, v

its solution should be of more practical interest.

To solve our problem rigorously, the spherical wave expansion may be

used. However, due to the fact that the source location and the two

dielectric surface centers do not coincide, the translational addition

theorem for vector spherical wave function [2] must be used. (Our problem

is roughly comparable to scattering by three dielectric spheres.) This

theorem leads to a complex series, which makes it very difficult to generate

numerical results. In this paper, we use the geometrical optics theory (GO)

[31, [4] to calculate the transmitted field in the problem sketched in

Figure 1. Such a solution, though only approximately valid for high

frequencies, is given in a simple closed form. Thus, it allows us

to study the "cause and effect" of the various parameters in a convenient

manner and gain physical insight.

1.
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II. SOLUTION FOR CONCENTRIC SPHERICAL SHELL

Let us consider the wave transmission problem in Figure 1. The

boundary surfaces of the dielectric shell are two concentric spheres

with radii R1 and R2 (both positive), and with a common center at Q.

The point source at 0 emits a spherical wave described by (for exp jwt

time convention)

-jkor
-i e e
E (r) = [P(6,p)o + Q(e,0)0] . (2.1)r

Here, (r,e,o) are spherical coordinates of r with origin at 0. Functions

P and Q describe the radiation pattern of the source. The wave number

k = 27r/A 0 = w1 )0 0 )
/2 is that of free space. By using GO [3], [4],

the transmitted field at an observation point 3 is to be determined.

Without loss of generality, we assume that point 3 lies in the (x,z)-plane

with rectangular coordinates (x3 ,O,z3 ).

A. Ray Tracing. In accordance with Snell's law, we trace a ray

from source point 0 to observation point 3, via refraction points I and

2 (Figure 1). Clearly, all four points, 0 to 3, lie in the same

(x,z)-plane. For a given launching angle e of the ray and the distance

c, the other geometrical parameters can be determined from the following

relations:

sin a= (d/RI)sin 8 , a = R1[sin(e - a) ]/sin a (2.2)

t -i i t
sin a = n sin a,l sin 2 = (R1/R 2 sin

tt t i
b R2 [sin(i a)]/sin 1 . sin a = n sin a2

x= a sin 8 + b sin(0- a + +l) + at 1 a 2 + 6)

3



t t t i i
z = a cos 8 + b cos (0 - C + aI) + c cos (a - 2 al a + 8)2 1 2 1 2

Thus, for a given (d,c), we can determine the position of point 3

straightforwardly. On the other hand, when point 3 is given, explicit

formulas do not exist for determining 8. One has to find 8 by trial-

and-error.

B. Field on the Ray. The present vector field problem can be

decomposed into two scalar ones: one with the electric field vector

perpendicular to the plane of incidence (E = y E ) and the other with

the electric field vector parallel to the plane of incidence (E ).

The final solution for the transmitted field Et at point 3 derived by

GO is given by

LEt (3) Ti E (1)

The various factors in (2.3) are explained below: TIL and T11 are the

products of the transmission coefficients at points 1 and 2, given by

= 4 11 n cos [ 1 2 (
1 (2n/Ia)

L cos aL cos 2-

4 icos cosct.
T11 = 4 + + n (2.4b)

~ cos L cos C2J

The two components of the incident field are calculated from (2.i):

-jk 0a

E.L(1) = e a Q(5,$ = 0) (2.5a)

El(I = e _ _a P(6, = 0) (2.5b)
( a

i*



The derivation of the divergence factor DF in (2.3) requires some effort.

With the details given in Appendix A, the final result for DF reads

/2 (1/2 1/2 22-1/2
DF - (1 + ( + K2b) ( i + 21 c )  ( +(2.6)

At point 1 or 2, it can be shown that the principal directions of the

transmitted wavefront are precisely the two directions parallel and

perpendicular to the plane of incidence. Here (Kil,K 1 2 ) are the two

principal curvatures of the transmitted wavefront at point 1, and

(K 2 1 ,K 2 2 ) are those at point 2. They are calculated from the relations

2 t.-ll 2 i 1 t i)1
)C = (n cos a Cos a + !-(n cos a1 - cos a') (2.7a)11 1 t 1 1

K + 1 i- -- Cos al)  (2.7b)

12 na1 n 1

2t -i -1- 2-i1t

K21 (Cos 2 a2) [(b + K_1 ) n cos a2 + -(cos a2 - n cos a2
2 (2.7c)

K 2 2 =n(b + K 2 ) + I(COS a2 - n cos a 2 ) • (2.7d)

The sign convention of K is as follows. If K is positive (negative),

the normal section of the wavefront is divergent (convergent). For

example, if the transmitted wavefront at point 1 is the same as the

incident spherical wavefront, we have K 1 1 = K 1 2 = +R For a typical

factor in (2.6), the square root convention isI + [ f ' ' if f is real

f = (1 + Kb) -1 / 2  (2.8)

+jjfj, if f is imaginary

When f is imaginary, it means that the ray has crossed a focus of the

ray pencil. The (+j) accounts for the well-known (7/2) phase retardation.

5



Several general comments about the solution in (2.3) are in order:

(i) For the case where a total reflection occurs (at1 or a becomes complex),

the field in the transmitted region is not an optical field, and the

present ray solution (2.3) is no longer valid. (ii) Except for special

I
cases, e.g., normal incidence a = 0, the two curvatures (K 21, 22) of

the transmitted wavefront emerging from the dielectric shell are not

equal. Thus, the transmitted pencil is generally astigmatic. (iii) It

is possible that K 2 1 and/or K are negative. Then the divergent pencil

from the source is transformed into a convergent (focusing) pencil after

propagating through the dielectric shell. (iv) The solution in (2.3)

remains valid for more geometries than the one shown in Figure 1. This

is discussed further in the next section.

III. GENERALIZATION OF FINAL SOLUTION

For transmission through the concentric spherical shell in Figure 1,

the final solution consists of two parts:

Part A: Ray tracing formulas in (2.2)

Part B: Field solution in (2.3) through (2.5)

It can be shown that Part B is valid under a more general condition

(Figure 2), namely,

(i) The centers of the spherical shells Q and Q2, need not

coincide, as long as the four points (0,1,2,3) are coplanar.

(ii) The surfaces of the shell can be either concave or convex.

Looking from the source side, RI (or R2 ) is positive if the

surface is concave, and R1 is negative if the surface is

convex.

6



R2 2
33

22

020

(a) R, >0, R2 >0 (b) R,>0, R,<O

x -z PLANE

QI Q2
37Q

2 R 2 3
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<cR1 0, R >0 (d) R <0, R 0

Figure 2. General configurations where the field solution (2.3) can be
used. Points (0,1,2,3) must be coplanar.
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Condition (i) is necessary in order for the scalar transmission coefficients

T1 and Tit in (2.4) to be valid. When the four points (0,1,2,3) are not

coplanar, the perpendicular and parallel polarizations are no longer

uncoupled. Then the scalar T1 or TiI in (2.3) must be replaced by a

(2 x 2) matrix. Also, (2.7) becomes more complicated.

For the general configurations in Figure 2, the ray tracing

formulas in (2.2) are not valid. However, by following Snell's law,

the ray tracing even in the most general situation is conceptually simple.

Thus, instead of working out a set of general formulas, we leave it to the

individual problems.

IV. AXIAL INCIDENCE ON SYMMETRICAL SHELLS

To study the features of the present ray solution, let us concentrate

on a special case, where the four points (QIQ 2,0,3) are on a straight

line (Figure 3). Then the four curvatures in (2.7) reduce to

1 n - 1
K11 1K1 2  na n R(4.a)

1

nRI + an(n-i) 1-n n 1-n
2 21 R - +  (4.1b)
22 21 + na R b + Ci R

bR 1+ ab(n-l+a +

An interesting question is "When does K1 1 or K 22 become negative (meaning

a convergent circle)?" This is answered below:

(i) Negative K1 1 . The transmitted pencil inside the dielectric

shell is a convergent one when K1 1 < 0 or

a > i_- n RI11 > 0 (4.2)

If R > 0 (concave dielectric interface shown in Figure 4a), this is possible

if n < i. If R < 0 (convex dielectric interface shown in Figure 4b),

8



Figure 3. Axial incidence on a symmetrical shell. In this example,
RI>0 (concave) and R,, < 0 (convex).
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this is possible only if n > i. The distance between point 1 and focal

point F1 is (K11 )-l.

(ii) Negative K2 2 " The transmitted field in the free-space region

outside the dielectric shell is convergent when K 2 2 < 0. Let us concentrate

on a special case in which the thickness of the dielectric shell is small

so that

-i

<< K 1(4.3)

Then K 22 in (4.1b) becomes approximately

K + (n - 1)(44
K22 a R 1 

(44

which is the well-known equation for the thin lens. (See for example

Eq. (41-1), p. 685 of [5]. Note the corresponding notations used in [5]

and here: s - -a, s' = - R1 = R and R, . -R,.) The condition

for a negative K22 under the approximation in (4.3) is

RIR

a> n>0 (4.5)

(iii) Far Field: If the observation point 3 is in the far zone

(K 22 c - 1), then DF in (2.6) becomes

DF - a a + (n- i) ab [ i+ 1 (4.6)DF + I b + I R R-- n a-
n 1 I

The first factor in ( } in (4.6) is the divergence factor of a planar

dielectric slab (RI,R 2  '0 ). Thus, the ratio of the electric field at

a far-field point 3 for a spherical shell and that for a dielectric

slab is

11i



- lit( 3) for spherical shell]

IEt( 3 ) for a slab of same thicknessi

1R n- )a 2 - R I R1
1R _ - R ib + .1 1  I (4.7)

RR b n LaJJ
1 2'

As a numerical example, consider the case in which the inner and outer

dielectric surfaces are concave and concentric (Q1 . Q2 ) with (Rl/b) - 2.

We plot n as a function of (a/b) for n = 0.5 and n = 3 in Figure 5. We

note that n can be substantially different from unity. When a - RI, we

have q - i. Thus, in this interesting special case, the axial far field

through a concentric spherical shell and that through a planar slab

become the same. Another interesting special case occurs when DF -

It means that the paraxial rays emerging from the dielectric shell

(Figure 3) are parallel to the axis so that they focus at the far-field

point at infinity. From (4.6), it is shown that DF - if K 22  0 or

I R - R2 + b(n - 1)/n
- (n - I) (4.8)
a R I[R2 - b(n - 1)/nl

Under the thin-lens approximation b : 0, (4.8) is reduced to the well-

known lensmaker's equation (see Eq. (41-2), p. 685 of [5]). In the

antenna radome application, (4.8) is useful in the determination of the

enhancement of the antenna main beam.

(iv) Multiple Refraction: For a given source point 0 and observation

point 3 in Figure 1 or 2, we can trace two types of geometrical optics rays.

The first type is the direct ray from 0 to 3 without going through internal

reflections in the dielectric shell. Its field solution is given in (2.3)

which, of course, is the main contribution. The second type contains

rays which bounce one or more times inside the shell before reaching point .

We now consider the contribution of such multipl- refracted rays. For the

12
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axial incidence case (Figure 3), let us further specialize the geometry

by setting (RI,R2) - . The dielectric shell becomes the slab shown in

Figure 6, and the field on the direct ray calculated from (2.3) reads

-jk (nb+c)F-
Et(3) - E (1) e T (4.9)

where T is the product of the transmission coefficients at points l and

2 (Figure 6a)

T TT +l) (4.10)

In a similar manner, we can calculate the field on the multiply refracted

rays (a twice internally refracted ray is shown in Figure 6b). Super-

imposing their contributions, we obtain the solution for the field at

point 3 including the direct and all multiply refracted rays, namely,

-jko(nb+c) n na 1
[EM=E (1) e Lna +b +ncjT

all rays

jFp - 2p
pI 0  1 na + b + nc1 na + ( 2 p + l)b + nce

(4.11)

Under the condition

(a + c) - (far field), or b - 0 (thin slab) (4.12a)

the series in (4.11) can be summed up in a closed form with the result

-jk0 (nb+c) _nna___

[Et(3)]all rays E (1) ea -+ b + nc slab (4.12b)

when Tslab is recognized as the transmission coefficient of the slab

14
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T -- T (4.12c)
slab 1 - " 1 2 exp(-j2k0nb)

Comparing (4.12b) with (4.9), we note the effect of the multiply refracted

rays is accounted for by replacing T by T When the condition in
slab'

(4.12a) is not met, we must evaluate (4.11) numerically. Let us define

an error term

P gt(3)1 including p multiply refracted rays

n E7t(3) including all multiply refracted rays

In Figure 7, we plot 6 0 (including no multiply refracted rays) and 61

(including one multiply refracted ray) vs. n for b = 0.75 X and

(a + c)/b = 4. Several observations are made. (a) For commonly used

values of n (between i and 3), the error 6 is 13% or less except at
0

resonances. A resonance occurs when all multiply refracted rays emerging

from the slab are in phase with the primary ray. For the configuration

in Figure 6, the resonance condition is

(nk0 b/Tr) = (2nb/X O) = a positive integer (4.14)

For an obliquely incident ray and/or a curved slab, the condition for

resonance is rarely satisfied. Thus, generally speaking, the error for

neglecting the multiple refraction is roughly 10%. (b) Errors 6 and 6i
0 1

have about the same order of magnitude. Thus, the inclusion of the first-

order multiply refracted ray does not in ger.-ral improve the accuracy of

the solution.

16
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V. NUMERICAL RESULTS

A. Radome. Consider a dielectric spherical radome with an inner

radius 20 A0' a uniform thickness 0.5 X0 and n = /Y, as shown in Figure 8.

The y-polarized source is located at points 1, 3, or 4, and its radiation

field in the E-plane is given by

-jkor

E (r,6,0 = 7/2) = [y cos (1.5 e)] (5.1)

The transmitted field is calculated from (2.3). For an observation point

in the E-plane and in the far-field zone (x = 0 plane and c in Figure 1),

we may rewrite (2.3) as

-jk r
-t- - e Y t(

E (r) r [y p()] , r (5.2)r

where r is the distance from point 0 to point 3 (Figure 1). We plot p t(e)

as a function of e in Figure 8. Generally speaking, the radome modifies

the radiation field gently, as expected.

B. Lens I (Double Concave). Unlike the above radome, a dielectric

lens may modify the incident field drastically. Let us consider Lens I,

drawn approximately to scale in Figure 9. The source is 2 \0 away from

the lens, and is y-polarized. Let us concentrate on the field in the

H-plane (x-z plane). In Figure 9, we launch 4 rays 2' apart. The outside

ray (at 6 = 60) suffers total reflection at the second face of the lens,

and is not transmitted into the free space region (we ignore multiple

refractions). We assume the incident field from the source is confined

to a cone (a beam). In the x-z plane, it is given by

-ei 0 if e < e (5.3)E (xO.z) r8
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Figure 8. E-plane radiation pattern through a spherical radome.
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In the present case (Lens I), we choose e = 5.50. After transmission

through the lens, the rays become more divergent, and they are spread

over an angular region of about e < 53.5*, which is considerably wider

than the incident angular spread (6 < 5.5*). At an observation point

(r,O, - 0), we express the transmitted field as

-jk 0 r
E (r,O )  -e y Qt(r,6)] .(5.4)

r

t i ti
In the absence of the lens, Q = I for 6 < 0 and Q = 0 for e > e .

With the lens present, we plot Q t(r,O) as a function of e for r 2 x 103 0

in Figure 10. Note that the transmitted field is much weaker (12% or less)

than the incident field because of the wider spread of the transmitted rays.

For the present case, Q t(r,e) is only very weakly dependent on r, as

long as r > 100 X0. Thus, the transmitted field E in (5.4) in the far

tzone is approximately a spherical wave with an angular pattern Q . Every

transmitted ray has two foci. Their distance behind the second face Z9
-l -1

of the lens is (K2 1 ) , and (K 2 2 ) , which may be calculated from (2.7).
(21)-I

In particular, is for the normal section of the wavefront in the
)-l

plane of incidence (x-z plane), whereas (K2 2 ) is for that in the

perpendicular plane (defined by the y-axis and the ray direction). For

the third ray (incident e 4) in Figure 9, we calculate from (2.7) that

( - +0. 2 1 AO +0.375 A 0. (5.5)

We mark the position of the focus corresponding to K21 by a cross in

Figure 9. The distance between A and the cross is (K21)- The trace

of the two sets of foci is shown in Figure 11. They are curves on the

two caustic surfaces of the transmitted wavefront (intersection of caustic

surfaces and the x-z plane).

21
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Figure 10. H-plane far field pattern through lens I and lens II.
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Figure 11. Trace of foci of the transmitted rays which lie in x-z plane
for lenses I and II. (For better presentation, the scale along
the x-axis is expanded.)
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C. Lens II (Double Convex). The geometry of Lens II and its ray

picture are shown in Figure 12. The incident field is given in (5.3) with

e = 10*. The transmitted field in the H-plane is expressed in (5.4), where

Qt(r,6) is again very weakly dependent on r in the far zone and is plotted

in Figure 10. We note that the incident 10-beam is now spread into a

67*-beam after transmission through Lens II. The peak value of the

transmitted field is about 24% of the incident field at the same far-field

location. The caustic curves are shown in Figure 11.

D. Lens III (Convexo-Concave). The geometry of Lens III is shown

in Figure 13. The radii (RI,R2 ) of the lens and the source distance

satisfy the lensmaker's equation in (4.8), so that the transmitted rays

near the axial direction are almost parallel and focus at a point at

infinity in the axial direction. The incident field is given in (5.3)

with = 120. The H-plane transmitted field E is expressed in (5.4),

twhere Q (r,) varies drastically from the near field zone up to r 1 00 0

as seen from Figure 14. Beyond r - 100 0' the beam becomes narrower, and

the peak becomes higher with the increase of r. It is well-known that

the exact value of the beam's peak (on a caustic surface) cannot be

predicted by the present geometrical optics theory. It can be calculated

from, for e.g., the Huygens-Green formula described in p. 107 of [7).

The caustic curves are shown in Figure 15.
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Figure 14. H-plane far field pattern through lens IllI.
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VI. CONCLUSION

For a given incident field in (2.1), a geometrical optics solution of

the transmitted field through a spherical dielectric shell (Figure 2) is

given in (2.3) through (2.7). The present solution is approximately valid

when (i) the source frequency is high (the radii of curvature of the curved

shell are large in terms of wavelength), (ii) the four points (0,1,2,3) in

Figure 2 are coplanar, and (iii) the observation point is away from the

caustic surfaces of the transmitted wavefront. Furthermore, our solution

includes only the contribution from the first-order refracted ray (a direct

ray from the source to the observation point without internal refractions

inside the dielectric shell). It has been estimated that, except at

"resonances" which rarely occur for curved shells, the error of neglecting

higher-order refracted rays is roughly 10% for n = Vr in the range 1 to 3.

r
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APPENDIX A

DERIVATION OF EQUATION (2.6)

Referring to Figure 1, the curvature matrix [3], [6] of the incident

spherical wave may be expressed as

S= a-] (A.1)

The curvature matrix of the inner surface of the radome (Z) is

Q = (A. 2)

From the knowledge of these two curvature matrices, the curvature matrix of

the refracted ray 1-2 may be expressed as [31

Q = (et)-I [eQl e/n + (cos a1 - cos ( -/n)Q 1 )(A.3)

i tn

where 8 and 8 are coordinate transformation matrices given by

i (A.4)00
rCos 

OL1
te = (A.5)

Simplifying (A.3), we obtain
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QI= (A. 6)

where K 1 1 and K12 are defined in (2.7).

The curvature matrix of the wavefront incident at point 2 is given by

Q2 t ( Q 1)  + b I] (A.7)

where I is the identity matrix. The curvature matrix of the transmitted

wavefront at 2 can be calculated similarly to that at 1. The final result

is

Q2 = (A.3)

where K 21 and K 22 are defined in (2.7).
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